LINEAR ALGEBRA

AND
PROPERTIES OF ESTIMATORS

Advanced Econometrics



Outline and Objectives

Outline:
@ review of linear algebra
@ linear algebra and the least squares estimator
@ properties of estimators

@ a small quiz

Objectives:
@ develop a common language for communicating
@ apply linear algebra to a familiar setting

@ understand what constitutes a “good” estimator
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Matrices and Vectors

@ A matrix is a rectangular array of elements:

T11 T2 - T1K

T21 Zag - T2K
X =

ITN1 IN2 " INK

@ X has N rows and K columns — N x K.

@ Element in row ¢ and column j of X: x;;

@ Matrices for which N = K are called square.

@ Two special sets of matrices: column vectors and row vectors:

1

y = y:Q and z:[zl 29 - ZK}

YN
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Equality and Transposition

@ Matrix Equality: X = Z if they contain the exact same elements at
the exact same positions: z;; = z;;, Vi, j

e Transpose of a Matrix: For any matrix (or vector) X, its transpose is
the matrix obtained by interchanging the rows and columns of X:

r1r T12 - T1K r11 X221 -+ IN1
T21 X22 - T2K , T12 X22 - IN2
X=1 . S e X =
TN1 ZIN2 - INK T1K 22K ' INK
1
Y2 ,
y=1. <:U’:[yl Y2 - yN]
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Symmetry and Addition

@ Symmetric Matrices: A square matrix is symmetric if it is equal to
its transpose:

1 2 3 1 2 3
A=|2 4 6| =A'=|2 4 6| =A
3 6 7 3 6 7
@ Matrix Addition: W = X + Z is defined as:
ri1+2z11  Tie+zi2 o TiKtTZ21K
To1+ 221 Too+zo2 -0 XoK T 22K
W =X+Z= ) . .
ITN1t2ZN1 TN2+2ZN2 - TNKTENK

e X and Z should have the same dimensions — conformable

o Matrix addition follows the same rules as scalar addition

e There exists a zero matrix, 0, such that X + 0 = X. All the elements of
0 are equal to 0.
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Multiplication

@ Scalar-Matrix Multiplication: Let a be a real number. W =a- X is

defined as:
aril axri19 cee aQr1K
arz; arg2 - OI2K
W =aX =
arnNy arng - AQrNK

@ Matrix Multiplication: Let X an N x K matrix and Z a K XL
matrix. Then W = X - Z is defined as an [N x L matrix with elements:

K

wig:ink-zkg Vi=1,...N, {(=1,...,L
k=1
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Multiplication

@ For the product to be defined, the two matrices need to be
conformable for multiplication:

[N x K]-[K x L]

o Visually:
Z1e
K
Tit o T o Tk | |z | =T Y Tk
. : : : k=1
L zKZ -

@ The ith row of X is a row vector. The fth column of Z is a column
vector: wjy is the inner product of the two.
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Multiplication

o If x and z are K x 1 vectors, the inner and outer products are:
w=x'z=12x and W =xz' #zx' = W'
@ In general:
XZ #ZX  but (XZ)' =Z'X’
which can be used to deduce that X’X is symmetric

@ There exists a square matrix I suchthat X - I =X and I- X = X.
@ I is called the identity matrix:
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Rank and Inversion

@ Rank of a Matrix: The rank of a matrix is the number of linearly
independent columns or rows.

o Let X be Nx K, with N > K. X has full rank if rank (X) = K
o It holds:

rank (X) = rank (XX') = rank (X'X)
@ Matrix Inversion The inverse of a square matrix A, if it exists, is a
matrix A~ with the property:

ATTA=AAT=1

o Not all matrices can be inverted!

e To be invertible, a matrix has to be square and to have full rank —
non-singular

o If A and B are invertible, it holds:

(AB) '=B7'A"!  and (A)'=(A7Y
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Positive and Negative Definiteness

@ Positive and Negative Definite Matrices: Let A be a K x K
symmetric matrix and v be a K x 1 vector. A is positive definite if:

v Av >0 Vv #0
A is positive semi-definite if:

v/ Av >0 Vv #0

Negative definiteness and negative semi-definiteness are defined similarly —
different direction of the inequality
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Why Matrix Algebra in this Course?

@ We will deal with econometric models — theoretical model plus data.

@ We need a compact notation to represent the model — store the data
in matrices.

@ The linear model with K explanatory variables:

Vi = ;11 +wiofa + w383+ ...+ 2 Kk Br + &

could be written as:

K
i = TikBk + e =XiB+ e

k=1
where:
i1 B1
;2 B2

X; = ) and 8=

Ti K Br
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Why Matrix Algebra in this Course?

@ We could go further. we can write y; = x}3 + ¢; for N potential
observations as:

y=XB+e
where:

/

Il €1 X3 r11 X122 - T1K
/

Y2 €2 X9 T21 X222 v T2K
/

YN EN XN IN1 IN2 - INK

@ The ordinary least squares estimator can be written as:

B=(XX)"(Xy) = (i xix;> 7 (i xy)
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Introductory Example

@ We want to estimate the average share of household income spent on
food products, in the Netherlands

@ This share is a random variable, Y

@ We use a sample of 100 households
@ We consider two estimators for the mean of the distribution of Y:

© the sample mean
@ the sample median

@ Which one would you use?
o Why?
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Estimators and Properties of Estimators

@ In econometrics, we have a model for the population

@ We assume we know the data generating process, up to a vector of
parameters 6

@ We take a sample from the population — random sample implies
random variables

@ We approximate 0 using the data

@ An estimator is a formula which is used to approximate the parameters
of the population using information from the sample — 6.

@ 0O is fixed!
@ data are random = @ is a random variable

@ 0 has all the characteristics of a random variable — mean, variance,
pdf, etc
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Finite Sample Properties — Unbiasedness & Efficiency

@ Unbiasedness: An estimator is unbiased if its expected value is equal
to the parameter it is estimating:

E(é)ze

In repeated samples, the estimator is on average correct.

@ Efficiency: An unbiased estimator is efficient if it has the smallest
possible variance within a class of unbiased estimators.
o Efficiency is a desirable property: the smaller the variance of an
estimator the more trust we can place on an estimate.
e Efficiency is a relative concept — there also exist absolute measures
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Finite Sample Properties — Unbiasedness & Efficiency

+— pdf of 6

pdf of 6

@ Both @ and 6 are unbiased
@ 0 has smaller variance than @
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Finite Sample Properties — Normality

o Normality: For an estimator 0 that has a multivariate normal
distribution with mean @ and variance X we will write:

6 ~N(0,)

o Normality facilitates post-estimation inference — t tests require 0), to
have a normal distribution

Theorem

Let 6 be a K-dimensional normally distributed random vector. We can
partition 0 into two parts such that:

o)~ (5] [ 22])
6, 02| [Z21 X2

Then: 61 ~N(0;,%1;) and 0y~ N(6s, )
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Asymptotic Properties — Consistency

What happens to the estimator as the sample size increases, N — oco?

@ Consistency: An estimator 0 is consistent if the probability of the
estimator being even very little off the true value in the population
becomes zero, when the sample size increases:

plim@ =60
For plim and a continuous function g it holds:
plim g (é) =g (plim é)

@ As the sample size approaches infinity the variance of a consistent
estimator goes to zero and the distribution of the estimator collapses
to the true parameter value
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Asymptotic Properties — Asymptotic Normality

o Asymptotic Normality: An estimator is asymptotically normal if it
converges in distribution to a multivariate normal:

\/N(é—0> 4, N (0, W)

@ As the sample size increases, the distribution of VN (9 — 0) becomes

indistinguishable from a normal.
@ In such a case we will write:

6 AN, W/N)

e We call V.= W/N the asymptotic variance of 0
@ Asymptotic normality is a desirable property for the same reasons as
normality.
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Asymptotic Properties — Asymptotic Efficiency

@ Asymptotic Efficiency: A consistent and asymptotically normally
distributed estimator is asymptotically efficient withing a class of
consistent and asymptotically normally distributed estimators if it has
the smallest possible asymptotic variance within this class.

Note: For an estimator to be asymptotically efficient it needs to:
@ be consistent
@ be asymptotically normal

@ have the smallest possible variance among consistent and
asymptotically normal estimators (within the reference class)
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A Small Quiz

@ We want to estimate a parameter 6 from a population.

@ We have a sample of N observations from the population.

@ We consider two alternative estimators:
o 6§ which is unbiased and has positive variance

e 0 which is biased and has zero variance

@ Is § more efficient than §?
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Summary

Summary

@ reviewed linear algebra and saw the OLS estimator in this notation

@ defined what is an estimator and its desirable properties:

Unbiasedness Consistency

E(é)z@ plimé:H

Normality Asymptotic Normality

6 ~N(0,5) 0 L N, W/N)

Efficiency Asymptotic Efficiency

Smallest possible variance | Smallest possible asymptotic variance

@ In what comes next we will:
@ use linear algebra extensively to communicate
@ use the properties of estimators to decide whether an estimator is
“good” or not in specific situations
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