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Outline and Objectives

Outline:

review of linear algebra

linear algebra and the least squares estimator

properties of estimators

a small quiz

Objectives:

develop a common language for communicating

apply linear algebra to a familiar setting

understand what constitutes a “good” estimator
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Verbeek – Appendix A

Matrices and Vectors

A matrix is a rectangular array of elements:

X =




x11 x12 · · · x1K
x21 x22 · · · x2K

...
...

. . .
...

xN1 xN2 · · · xNK




X has N rows and K columns – N×K.

Element in row i and column j of X: xij
Matrices for which N = K are called square.

Two special sets of matrices: column vectors and row vectors:

y =




y1
y2
...
yN


 and z =

[
z1 z2 · · · zK

]
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Verbeek – Appendix A

Equality and Transposition

Matrix Equality: X = Z if they contain the exact same elements at
the exact same positions: xij = zij , ∀i, j
Transpose of a Matrix: For any matrix (or vector) X, its transpose is
the matrix obtained by interchanging the rows and columns of X:

X =




x11 x12 · · · x1K
x21 x22 · · · x2K

...
...

. . .
...

xN1 xN2 · · · xNK


⇔ X′ =




x11 x21 · · · xN1

x12 x22 · · · xN2
...

...
. . .

...
x1K x2K · · · xNK




y =




y1
y2
...
yN


⇔ y′ =

[
y1 y2 · · · yN

]
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Verbeek – Appendix A

Symmetry and Addition

Symmetric Matrices: A square matrix is symmetric if it is equal to
its transpose:

A =



1 2 3
2 4 6
3 6 7


 =⇒ A′ =



1 2 3
2 4 6
3 6 7


 = A

Matrix Addition: W = X + Z is defined as:

W = X+Z =




x11+z11 x12+z12 · · · x1K+z1K
x21+z21 x22+z22 · · · x2K+z2K

...
...

. . .
...

xN1+zN1 xN2+zN2 · · · xNK+zNK




X and Z should have the same dimensions – conformable
Matrix addition follows the same rules as scalar addition
There exists a zero matrix, 0, such that X + 0 = X. All the elements of
0 are equal to 0.
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Verbeek – Appendix A

Multiplication

Scalar-Matrix Multiplication: Let a be a real number. W = a ·X is
defined as:

W = aX =




ax11 ax12 · · · ax1K
ax21 ax22 · · · ax2K

...
...

. . .
...

axN1 axN2 · · · axNK




Matrix Multiplication: Let X an N×K matrix and Z a K×L
matrix. Then W = X · Z is defined as an N×L matrix with elements:

wi` =
K∑

k=1

xik · zk` ∀i = 1, . . . N, ` = 1, . . . , L
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Verbeek – Appendix A

Multiplication

For the product to be defined, the two matrices need to be
conformable for multiplication:

[N ×K] · [K × L]

Visually:




...
...

...
...

...
xi1 · · · xi` · · · xiK

...
...

...
...

...







· · · z1` · · ·
...

...
...

... zi`
...

...
...

...
· · · zK` · · ·



=




...
...

...
...

K∑
k=1

xikzk`
...

...
...

...




The ith row of X is a row vector. The `th column of Z is a column
vector: wi` is the inner product of the two.
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Verbeek – Appendix A

Multiplication

If x and z are K×1 vectors, the inner and outer products are:

w = x′z = z′x and W = xz′ 6= zx′ = W′

In general:
XZ 6= ZX but (XZ)′ = Z′X′

which can be used to deduce that X′X is symmetric

There exists a square matrix I such that X · I = X and I ·X = X.

I is called the identity matrix:

I =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



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Verbeek – Appendix A

Rank and Inversion

Rank of a Matrix: The rank of a matrix is the number of linearly
independent columns or rows.

Let X be N×K, with N ≥ K. X has full rank if rank (X) = K
It holds:

rank (X) = rank (XX′) = rank (X′X)

Matrix Inversion The inverse of a square matrix A, if it exists, is a
matrix A−1 with the property:

A−1A = AA−1 = I

Not all matrices can be inverted!
To be invertible, a matrix has to be square and to have full rank –
non-singular
If A and B are invertible, it holds:

(AB)
−1

= B−1A−1 and (A′)
−1

=
(
A−1

)′



Review of Linear Algebra Matrix Algebra and OLS Properties of Estimators Summary

Verbeek – Appendix A

Positive and Negative Definiteness

Positive and Negative Definite Matrices: Let A be a K×K
symmetric matrix and v be a K×1 vector. A is positive definite if:

v′Av > 0 ∀v 6= 0

A is positive semi-definite if:

v′Av ≥ 0 ∀v 6= 0

Negative definiteness and negative semi-definiteness are defined similarly –
different direction of the inequality
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Verbeek – Appendix A

Why Matrix Algebra in this Course?

We will deal with econometric models – theoretical model plus data.

We need a compact notation to represent the model – store the data
in matrices.

The linear model with K explanatory variables:

yi = xi,1β1 + xi,2β2 + xi,3β3 + . . .+ xi,KβK + εi

could be written as:

yi =

K∑

k=1

xi,kβk + εi = x′iβ + εi

where:

xi =




xi,1
xi,2

...
xi,K


 and β =




β1
β2
...
βK



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Why Matrix Algebra in this Course?

We could go further. we can write yi = x′iβ + εi for N potential
observations as:

y = Xβ + ε

where:

y =




y1
y2
...
yN


 ε =




ε1
ε2
...
εN


X =




x′1
x′2
...

x′N


 =




x11 x12 · · · x1K
x21 x22 · · · x2K

...
...

. . .
...

xN1 xN2 · · · xNK




The ordinary least squares estimator can be written as:

β̂ =
(
X′X

)−1 (
X′y

)
=

(
N∑

i=1

xix
′
i

)−1( N∑

i=1

xiyi

)
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Introductory Example

We want to estimate the average share of household income spent on
food products, in the Netherlands

This share is a random variable, Y

We use a sample of 100 households

We consider two estimators for the mean of the distribution of Y :
1 the sample mean
2 the sample median

Which one would you use?

Why?
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Estimators and Properties of Estimators

In econometrics, we have a model for the population

We assume we know the data generating process, up to a vector of
parameters θ

We take a sample from the population → random sample implies
random variables

We approximate θ using the data

An estimator is a formula which is used to approximate the parameters
of the population using information from the sample – θ̂.

θ is fixed!

data are random =⇒ θ̂ is a random variable

θ̂ has all the characteristics of a random variable – mean, variance,
pdf, etc
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Verbeek – §2.3

Finite Sample Properties – Unbiasedness & Efficiency

Unbiasedness: An estimator is unbiased if its expected value is equal
to the parameter it is estimating:

E
(
θ̂
)
= θ

In repeated samples, the estimator is on average correct.

Efficiency: An unbiased estimator is efficient if it has the smallest
possible variance within a class of unbiased estimators.

Efficiency is a desirable property: the smaller the variance of an
estimator the more trust we can place on an estimate.
Efficiency is a relative concept – there also exist absolute measures
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Verbeek – §2.3

Finite Sample Properties – Unbiasedness & Efficiency

pdf of θ̃ →

← pdf of θ̂

θ

Both θ̃ and θ̂ are unbiased

θ̂ has smaller variance than θ̃
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Verbeek – §2.3

Finite Sample Properties – Normality

Normality: For an estimator θ̂ that has a multivariate normal
distribution with mean θ and variance Σ we will write:

θ̂ ∼ N(θ,Σ)

Normality facilitates post-estimation inference – t tests require θ̂k to
have a normal distribution

Theorem

Let θ̂ be a K-dimensional normally distributed random vector. We can
partition θ̂ into two parts such that:

[
θ̂1
θ̂2

]
∼ N

([
θ1
θ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])

Then: θ̂1 ∼ N(θ1,Σ11) and θ̂2 ∼ N(θ2,Σ22)
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Verbeek – §2.6

Asymptotic Properties – Consistency

What happens to the estimator as the sample size increases, N→∞?

Consistency: An estimator θ̂ is consistent if the probability of the
estimator being even very little off the true value in the population
becomes zero, when the sample size increases:

plim θ̂ = θ

For plim and a continuous function g it holds:

plim g
(
θ̂
)
= g

(
plim θ̂

)

As the sample size approaches infinity the variance of a consistent
estimator goes to zero and the distribution of the estimator collapses
to the true parameter value
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Verbeek – §2.6

Asymptotic Properties – Asymptotic Normality

Asymptotic Normality: An estimator is asymptotically normal if it
converges in distribution to a multivariate normal:

√
N
(
θ̂ − θ

)
d−→ N(0,W)

As the sample size increases, the distribution of
√
N
(
θ̂ − θ

)
becomes

indistinguishable from a normal.
In such a case we will write:

θ̂
A∼ N(θ,W/N)

We call V = W/N the asymptotic variance of θ̂
Asymptotic normality is a desirable property for the same reasons as
normality.
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Verbeek – §2.6

Asymptotic Properties – Asymptotic Efficiency

Asymptotic Efficiency: A consistent and asymptotically normally
distributed estimator is asymptotically efficient withing a class of
consistent and asymptotically normally distributed estimators if it has
the smallest possible asymptotic variance within this class.

Note: For an estimator to be asymptotically efficient it needs to:

be consistent

be asymptotically normal

have the smallest possible variance among consistent and
asymptotically normal estimators (within the reference class)
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A Small Quiz

We want to estimate a parameter θ from a population.

We have a sample of N observations from the population.

We consider two alternative estimators:

θ̂ which is unbiased and has positive variance

θ̃ which is biased and has zero variance

Is θ̃ more efficient than θ̂?
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Summary

reviewed linear algebra and saw the OLS estimator in this notation

defined what is an estimator and its desirable properties:

Unbiasedness Consistency

E
(
θ̂
)
= θ plim θ̂ = θ

Normality Asymptotic Normality

θ̂ ∼ N(θ,Σ) θ̂
A∼ N(θ,W/N)

Efficiency Asymptotic Efficiency
Smallest possible variance Smallest possible asymptotic variance

In what comes next we will:

use linear algebra extensively to communicate
use the properties of estimators to decide whether an estimator is
“good” or not in specific situations
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